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—— Abstract

Colour refinement is at the heart of all the most efficient graph isomorphism software packages.
In this paper we present a method for extending the applicability of refinement algorithms to
directed graphs with weighted edges. We use Traces as a reference software, but the proposed
solution is easily transferrable to any other refinement-based graph isomorphism tool in the
literature. We substantiate the claim that the performances of the original algorithm remain
substantially unchanged by showing experiments for some classes of benchmark graphs.
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1 Introduction

An isomorphism between two graphs is a bijection between their vertex sets that preserves
adjacency. An automorphism is an isomorphism from a graph to itself. The set of all
automorphisms of a graph G form a group under composition called the automorphism group
Aut(G) whose order is |Aut(G)|. The graph isomorphism problem (GI) is that of determining
whether there is an isomorphism between two given graphs. It is convenient to consider GI
for vertex coloured graphs, in which case isomorphisms and automorphisms must preserve
colours of vertices.

In this paper we will consider GI for coloured graphs and digraphs with weighted edges,
in which case isomorphisms and automorphisms must preserve weights of edges, too. Quite
surprisingly, none of the existing GI software packages is currently able to treat such class
of graphs directly. Existing software can handle weighted digraphs by using layers (as in
the nauty manual [16]) or by using unweighted gadgets to simulate weighted directed edges
(see Figure 1). However, both methods multiply the size of the graph and so increase the
running time and space significantly. We will use Traces [15, 19] as reference program, but
the method that we are going to describe can be adapted to any other GI software.

The most successful GI packages are based on the individualization-refinement technique:
they can treat graphs with a huge number of vertices and edges quite efficiently. During the
computation, these programs spend most of the time in the operation of colour refinement,
i.e. in the assignment of a minimal numer of colours to vertices of the graph, in a way that
vertices with the same colour have neighbours with the same colours. In every GI package,
the refinement routines have been the object of subsequent optimizations, sometimes over
decades: to add new features to them may not be an easy task.

From their part, refinement algorithms spend most of the time in counting neighbours
of vertices. At each iteration, a reference colour c is selected and vertices of the graph are
classified according to the number of c-coloured neighbours they have.
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In the case of graphs with weighted directed edges — and in the context of graph
isomorphism — the main issue to be considered is that the notion of adjacency is not as
immediate as in the case of simple graphs. In our setting, the classification of a vertex u
must take into account not only weights of edges from u to vertices with the current reference
colour, but also weights of their opposite edges. The main motivation of this paper is to go
beyond these additional difficulties by keeping the counting mechanism of the refinement
algorithm for simple graphs. Shortly, the solution we propose is the adoption of internal
weights — to be used during the computation, only — which encode the information from both
the weights of an edge and its opposite edge.

In particular, it is our aim to show (and prove) that the ability to process weighted graphs
and digraphs can be added to Traces in a very simple and conservative way: (i) by changing
a minimal number of lines of the existing code; (ii) by introducing a negligible overhead —
with respect to the whole computation — in preprocessing weights, just in the case of the
new families of graphs; (iii) by preserving substantially the same performances in the case of
simple graphs. The simplicity of the proposed solution stems from the fact that it exactly
captures the additional complexities arising when using graphs with weighted edges.

Towards the aim of the paper, in Section 2 we will briefly review the individualization-
refinement technique and we will consider the issues in extending the method to the case of
weighted digraphs; in Section 3 we will introduce internal weights, and we will prove their
properties. The new algorithm will be presented in Section 4, together with a brief analysis of
its complexity. Experimental results will be shown in Section 5. The details of the algorithm
for assigning internal weights will be presented in Appendix.

2 Practical aspects of the graph isomorphism problem

The theoretical status of GI, which culminates with Babai’s recent quasi-polinomiality result
[2], is outside the scope of this paper; a brief historical description can be found in [15].

From a practical perspective, the most successful approach to GI is the “individualization-
refinement” method, which originates in [18, 5, 1] and was distributed in a software package,
nauty, by McKay [13].

Basically, a colouring (or partition) refinement function classifies vertices of a graph
G, in a way which is invariant under isomorphism, according to the classification of their
neighbours. The sets of vertices with a given colour are called cells. Vertices with a specific
colour (chosen in an isomorphism invariant way, again) are individualized one by one in
order to distinguish them from other vertices in the same cell. This mechanism produces a
search tree, whose nodes represent refined colourings, while branching is determined by the
individualization step. Colourings in which all cells are singletons (called discrete) appear
as leaves of the search tree. Equivalent discrete colourings induce automorphisms of the
graph G. Pruning of the tree is obtained by excluding non-matching colourings and by the
use of automorphisms. Comparing colourings also allows us to define a best leaf, which is
used to canonically label the graph G, namely to produce a representative of exactly the
isomorphism class of G.

Software distributions based on the individualization-refinement technique such as
nauty[13, 15, 14, 16], Traces|[15, 14, 16, 19], Bliss[9, 10], conauto[l1, 12] and saucy [6, 7]
are the most efficient GI tools currently available, though Neuen and Schweitzer [17] have
recently tailored classes of graphs which are not tractable by them.
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2.1 Graphs and colourings

A weighted digraph is a triple G = (V, E,w), where (v,v) € E and (u,v) € E = (v,u) €
E Yu,v € V; w: E — W is a function mapping arcs to elements of a finite set VW of possible
weights. Throughout the paper, we will assume without loss of generality that W C N is a
finite set of natural numbers. Note that loops can be easily represented in our setting by
colouring vertices.

Figure 1 A directed graph (a), a weighted graph (b), a weighted digraph (c) and its encoding
by means of a simple coloured graph (d). In these pictures, the arc (u,v) has label “a,b” when the
weight of (u,v) is a and the weight of (v, u) is b. The simple edge (u,v) has label “a” when both the
weight of (u,v) and that of (v,u) are a # 0,1. The simple edge (u,v) has no label when both the
weight of (u,v) and that of (v, u) are 1. The graph in (d) is obtained from the one in (¢) by adding
two vertices for each arc and colouring them according to their weight.

Let G = G,, denote the set of graphs with vertex set V = {1,2,...,n} A colouring of V'
(or of G € G) is a surjective function 7 from V onto {1,2,...,k} for some k. The number of

colours, i.e. k, is denoted by |m|. A cell of 7 is the set of vertices with some given colour.
A discrete colouring is a colouring in which each cell is a singleton, in which case |7| = n.

Note that a discrete colouring is a permutation of V.

If m, 7" are colourings, then 7’ is finer than or equal to 7, written ' < 7, if 7(v) <
m(w) = 7'(v) < 7' (w) for all v,w € V. (This implies that each cell of 7’ is a subset of a cell
of m, but the converse is not true.)

A pair (G, 7), where 7 is a colouring of G, is called a coloured graph.

Let S,, denote the symmetric group acting on V. We indicate the action of elements

of S,, by exponentiation. That is, for v € V and g € S,,, v9 is the image of v under g.

The same notation indicates the induced action on complex structures derived from V. In
particular, if G = (V, E,w) € G, then: (i) G9 € G has u9 adjacent to v9 exactly when
u and v are adjacent in G; (ii) if 7w is a colouring of V, then 79 is the colouring with
w9 (v9) = w(v) for each v € V; (iii) w9 is such that w?(u9,v?) = w(u,v), for each (u,v) € E;
(iv) (G,m)9 = ((VI,E9,w9),m9).

2.2 Graph isomorphism

Two coloured graphs (G = (V,E,w),n),(G' = (V,E',w'),n") are isomorphic if there is
g € Sy such that (G',7') = (G, )9, in which case we write (G,7) = (G',7’). Such a g is
called an isomorphism. The automorphism group Aut(G, ) is the group of isomorphisms of
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the coloured graph (G, ) to itself; that is,
Auw(G,m)={g € S, : (G,m)? = (G,m)}.

Let IT = II,, denote the set of colourings. A canonical form is a function
C:GxII—-GxII

such that, for all G € G, 7 € II and g € S,
C(G,m) = (G,7) and C(GY,79) = C(G, 7). (1)

In other words, it assigns to each coloured graph an isomorphic coloured graph that is a

~

unique representative of its isomorphism class. It follows from the definition that (G, ) &
(G, 7" & C(G,n) =C(G, ).

2.3 Refinement
We first review and discuss refinement for simple graphs.

» Definition 1 (the simple graph case). Let G € G be a simple graph.

1. A colouring of G is called equitable if any two vertices of the same colour are adjacent to
the same number of vertices of each colour.

2. For every colouring m of G, a coarsest equitable colouring 7’ finer than 7 is called a
(colour) refinement of w. It is well known that 7’ is unique up to the order of its cells.

An algorithm for computing 7’ appears in [13]. We summarize it in Algorithm 1.
All refinement algorithms present in the literature are variants of this one. The paper
of Berkholz, Bonsma and Grohe [3] has recently presented a deep analysis of refinement
algorithms, establishing their complexity in O((m + n)logn) time, where n is the number of
vertices and m the number of edges of the input graph.

Algorithm 1 Refinement algorithm.

Data: 7 is the input colouring and « is a sequence of some cells of .
Result: The final value of 7 is the output colouring.

while « is not empty and 7 is not discrete do
Remove some element W from «;
Count the number of edges from vertices in W to each vertex;
for each cell X of m do
Let X1,..., X} be the fragments of X distinguished according
to the counting of the previous step;
Replace X by X;,..., Xy in m;
if X € a then
Replace X by Xi,..., X% in o
else
Add all but one of the largest of Xq,..., Xy to «;

end
end
end
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Figure 2 Refinement (simple graphs); individualization of vertex 10 and refinement (right).

» Example 2. A simple graph (left) and its colour refinement are shown in Figure 2. The
rightmost colouring is obtained, by refining, after the individualization of vertex 10.

In Algorithm 1, the cell W causes the splitting of the cell X when two vertices in X have
a different number of neighbours in W. We will call W the reference cell. The correctness
of the algorithm is based on the fact that — at every iteration of the while loop — the
sequence « contains at least cells which may cause any possible splitting of other cells. In
particular, when the refinement function is called at the beginning of the computation, the
sequence of all cells of the input colouring is assigned to «, while after an individualization
step it is sufficient to refine the colouring by assigning to « only the cell which contains the
individualized vertex.

All the programs based on the individualization-refinement method spend most of their
time in refining partitions; for its part, the refinement algorithm spends most of its time in
counting neighbours of the reference cell. Therefore, the overall efficiency of the algorithm
depends to a large degree on the efficiency of the colour refinement procedure. Traces, for
instance, distinguishes several cases in the counting loop, according to different rates of
density of the graph, and gives priority to singleton reference cells.

In this scenario, it is our aim to equip Traces with the additional resources needed to
treat weighted graphs, without making any change to the neighbour counting algorithms.
The main issue to be considered is that a cell must be split not only in conformity with the
number of its outgoing edges falling into the reference cell, but also according to the weight
of such edges and to the weight of their opposite edges (see e.g. the cell {2,3,6,7} in Figure
3).

» Definition 3 (the weighted digraph case). Let G = (V, E,w) € G be a weighted digraph
with weights from W C N.

1. Let u,v € V be two distinct vertices of G. We say that u is (a,b)-adjacent to v if
w(u,v) = a and w(v,u) = b and a,b are not both equal to 0. Therefore, if u is (a, b)-
adjacent to v, then v is (b, a)-adjacent to w.

2. A colouring of G is called equitable if any two vertices of the same colour are (a, b)-adjacent
to the same number of vertices of each colour, for any (a,b) € W x W.

3. For every colouring m of G a coarsest equitable colouring 7’ finer than 7 is called a
refinement of .
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Figure 3 Refinement (weighted digraphs): the splitting of the cell {2, 3,6, 7} into {2,6}{3,7} is
caused by the reference cell {9}, due to the weights of the edges from vertex 9 to 2,3,6,7.

3 Internal weights

Let G = (V, E,w) € G be a weighted digraph with weights from W C N. We assign internal
weights to edges of GG, with the aim of making the refinement phase similar as much as
possible to that for simple graphs. We will prove that the order of the automorphism group of
G with internal weights remains unchanged, and that a canonical form of G can be obtained
at the end of the computation simply by restoring the original weights.

» Definition 4. We define the function w which assigns internal weights to edges of G in
two steps:
1. We define the function

bw: E—WxW

(u,v) = (w(u,v),w(v,u)).

(2)

and we denote by ®,, = {(w(u,v),w(v,u)) | (u,v) € E} the image of ¢, and by ®!* the
lexicographically ordered sequence of elements of ®,,.
2. Let W=/{0,1,...,|®,| — 1}. We define the function
w: E—-W
(u,v) + the index of ¢y, (u,v) in S (starting from 0).

3. For any G = (V,E,w) € G, we denote G = (V, E,W).

» Example 5. In Figure 4, internal weights are assigned to the leftmost graph. For any edge
(u,v) in the second column of the table, the corresponding entry a,b — i in the first column
shows that w(u,v) = a,w(v,u) =b and W(u,v) = i. Therefore, the internal weight i carries
the information of both the weights of (u,v) and (v,u).

For any pair of edges (u1,v1) and (ug,v2)

(By (2)) buw(u1,v1) = Gu(uz,v2) & du(v1,u1) = Gu(v2, uz) (4)
(By (3)) W(u1,v1) = W(uz,v2) < du(u1,v1) = du(uz, v2), (5)
therefore the internal weight of an edge encodes both w(u,v) and w(v,u).

» Lemma 6. Let G = (V,E,w) € G. Then
1. ¢u(ur,vi) = dwluz, v2) & dw(ur, v1) = dw(uz, v2).
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’ weights — index ‘ edges ‘
0,10 (2,1)
1,0 > 1 (1,2)
1,2—2 (3,1),(4,2)
2,1 >3 (1,3),(2,4)
3,3—>4 (1,4),(2,3),(3,2),(4,1)

Figure 4 Assignment of internal weights.

2. dw(ur,v1) = ¢w(uz, v2) & dw(v1,u1) = dm(we, uz).
Proof. These follow from (4) and (5). <

» Remark. (Idempotence) For any G = (V, E,w) € G we have G = G.

In fact, by Lemma 6.2, for every a € W there is one and only one b € W such that
éw(u,v) = (a,b), for some (u,v) € E. It follows that W = W and that the index of (a,b) in
Pl is exactly a. Thus, w = w. Note that (a,b) € @z < (b,a) € @7, therefore the set of
pairs ®g is a bijection on W.

» Theorem 7. Let G,G1,G2 € G. Then:

1. Aut(G) = Aut(G).

2. G1 =Gy éGilgGiz

Proof. Both 1 and 2 follow from Lemma 6.1.

1. (=) Let g € Aut(G) be such that for some vertices uy, vy, uz,v2 we have (uq,v1)? =
(ug,v2). Then ¢y (ur,v1) = ¢u(usz,va), since g preserves weights. By Lemma 6.1 we
obtain that g € Aut(G). The converse implication is proven similarly.

2. It is well known that we can decide the isomorphism of two graphs by comparing the
order of their automorphism groups with the order of the automorphism group of their
union graph. The theorem follows considering the union graph of G; and G, applying
the previous result.

<

» Remark. The converse of Theorem 7.2 does not hold. A simple example can be derived
as a consequence of the idempotence property. In fact, G = G % G = G. Consider as a
further counterexample the graph G in Figure 4 (left), and replace weight 2 with 3 in all its
occurrences, thus obtaining a graph G’ not isomorphic to G. However, G = G'.

4 Refinement and isomorphism test

The use of internal weights allows refinements of weighted digraphs to be computed with an
algorithm only slightly different from Algorithm 1, as shown in Algorithm 2. The counting
loop is fractioned according to the internal weights of outgoing edges of elements of the
reference cell W.

» Theorem 8. (Correctness)
1. Given an internally weighted digraph G and a colouring © of G, the output colouring of
Algorithm 2 is a refinement of .
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Algorithm 2 Refinement algorithm for weighted digraphs.

Data: 7 is the input colouring and « is a sequence of some cells of 7.
Result: The final value of 7 is the output colouring.

while a is not empty and 7 is not discrete do
Remove some element W from «;
for each internal weight z (in ascending order) of outgoing arcs of vertices in W do
Count the number of edges with weight z from vertices in W to each vertex;
for each cell X of m do
Let X1,..., X} be the fragments of X distinguished according

to the counting of the previous step;
Replace X by Xi,..., Xy in 7;

if X € a then

Replace X by Xi,..., X in o

else
Add all but one of the largest of Xy,..., Xi to «;

end

end
end
end

2. In the case of simple graphs, Algorithm 2 coincides with Algorithm 1.

Proof. 1. The proof follows the pattern of any similar proof in the literature, see e.g. [3].
In a nutshell, (i) the resulting colouring is as coarse as possible since any cell splitting
executed by the algorithm is necessary; (ii) it is also sufficiently fine. In fact assume,
towards a contradiction, that the final colouring has two cells W7 and W5 such that two
vertices u,v € Wi have a different number of (a,b)-neighbours in Wa, for some internal
weights a, b. This is impossible if W5 is present in the sequence « at the beginning of the
computation. Therefore W5 must have been derived by the splitting of some other cell
W. Assume W5 is not one the largest cells coming from splitting . In this case, W5 is
added to a and subsequently removed from it, thus causing v and v to be distributed
into two different subcells of 7. Otherwise, if W5 is not added to « after splitting W,
then the remaining subcells of W — which are all added to « — cause the same splitting
of W5 (this is a classical result by Hopcroft [8]).

2. In the case of simple graphs, we can assume that only one weight is present. Therefore
the highlighted loop in Algorithm 2 consists of only one iteration.

<

4.1 Invariance by isomorphism and preprocessing

Let G = (V, E,w) € G and let 7 be the initial colouring of G. Weights are chosen in the added
loop of Algorithm 2 in ascending order, since this choice is invariant under isomorphism. In
order to make the new algorithm easily usable in Traces, for each vertex v of G we consider
the ordered sequence o, of internal weights of its outgoing edges and we store the neighbours
of v according to this ordering. In addition, we denote oy = {0, | v € V} and we refine
the colouring 7 by splitting each cell according to the lexicographic order of elements of oy .
We observe that in a simple graph the counterpart of this splitting operation is the degree
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colouring, since in that case sequences in oy only differ in their length. At the end of this
kind of preprocessing phase, if two vertices u and v appear in the same cell, then o, = o,
and internal weights of neighbours of v and v will immediately emerge in ascending order in
the weight loop of Algorithm 2.

» Example 9. In Figure 5, the colouring of the leftmost graph is determined conforming
to the ordering of oy. Two vertices with the same colour, e.g 4 and 5, are such that
o4 = o5 = (0,2,7). We observe that the colouring is not equitable. In fact, 5 has 6 as
neighbour, but 4, which appears in the same cell of 5, has no neighbour in the cell of 6. The
cell {1,4,5,8} is split into {1,5}{4, 8} during the execution of Algorithm 2 as soon as the
cell {2,6} is removed from a. More precisely, the splitting occurs when considering outgoing
edges of elements of the cell {2,6} whose internal weight is 2. The result of the splitting
operation is shown in the rightmost graph, whose colouring is equitable.

Figure 5 ov-sequence colouring and refinement.

4.2 The new GI algorithm: analysis

Algorithm 3 GI algorithm.

Data: A coloured graph (G = (V, E,w), ).
Result: The order of Aut(G, ) and the canonical labelling C(G, ) of (G, ).
Compute internal weights of G}
Make a copy of (V, E);
Preprocess the new graph G’ = (V, E,w) by sorting the neighbours of each v € V
according to the sequence o, and by considering the oy -refinement of 7;

4 Split cells of 7 according to the order of vertices induced by the order ofsoy. Run

WTraces (namely, Traces with Algorithm 2 in place of Algorithm 1)
Restore the original weights in the canonical labelling C(G’, x): if p is the permutation
such that C(G’',7) = (G, #P), take C(G,w) = (GP, wP).

Let (G = (V, E,w),m) be a coloured graph with n = |V| and m = |E|. Algorithm 3
summarizes the method to compute the order of the automorphism group and the canonical
form of a weighted digraph that we have described in the previous sections. We observe that:

1. The computation of internal weights requires O(n + m) time under the (reasonable)
assumption that V(u,v) € E : w(u,v) < m, O(n+mlogm) time otherwise (see Appendix).
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2. To make a copy of (V, E) requires O(n + m) time.

3. The preprocessing phase requires O(m) time for sorting the neighbours of vertices
according to internal weights of outgoing edges, and O(m) time to order the sequence
oy. In fact, a radix sort can be used, which runs in O(nn’) time, where n’ is the average
length of sequences in oy . In our setting, O(nn’) = O(m) since the length of o, € oy is
the outdegree of v.

4. For any colouring, Traces always mantains its inverse. Using this information, cells of 7
can be split in conformity to the ordering of oy in O(n) time.

Recalling that the refinement function runs in time O((m+n) logn) and that m < n(n—1),
it follows that the additional computational effort of Algorithm 3 with respect to Traces is
less than (or at least comparable to) one single call of the refinement function.

5 Experimental results

In the following figures, we present some experiments for a variety benchmark graphs. The
graphs are taken from http://pallini.di.uniromal.it/Graphs.html.

The times given are for a Macbook Pro with 3.1 GHz Intel i7 processor (16GB of RAM),
using the LLVM compiler (version 9.0.0) and running in a single thread. The interested reader
will find the binary codes at http://pallini.di.uniromal.it/Weights.html, toghether
with several other families of graphs.

We recall that Traces always computes the order and generators of the automorphism
group of the input graph. At the user’s request, it computes the canonical form of the graph,
too.

Easy graphs are processed multiple times to give more precise times. We usually start
from the unit partition, except when specified in the pictures.

The execution of experimental tests with the assigninment of random weights to arcs
of graphs from some known relevant families does not give interesting benchmarks since
the weight assignment usually breaks all the symmetries of the graph. In order to produce
meaningful experiments, for each considered graph G, a weighted version G,, of G is built
as follows: we consider the initial refined partition of G, say (W1,...,W,,), and to each arc
(u,v) of G we assign the weight k if v € Wj,. This enables to force the program to consider
the input as a weighted digraph, therefore executing all the additional steps described in the
paper. Note that the graph G, has the same automorphism group of G.

Four different experiments are reported:

@ execution of the currently distributed version of Traces (v26r10), with canonical form;
A execution of WTraces (the new program) for a simple graph, with canonical form;

¢ execution of WTraces adding weights to the input graph, with canonical form;

® cxecution of WTraces, without canonical form.

All experiments show that Traces and WTraces have similar performances for simple
unweighted graphs. In particular, plots #1-#3 in Figure 6 show that the extra computational
cost becomes negligeable as the number of vertices of the graph increases and (#7) as
the graph becomes harder. Plots #4,#7,#10 show the the performance of WTraces for
weightd digraphs, comparing them to their unweighted version. Due to the presence of the
preprocessing overhead, some difference is found for very easy graphs, while the performances
are similar for harder cases. The same holds in #5,#8,#11, where the initial colouring of the
graph is obtained after individualizing one vertex, thus allowing more weights in the graph
Gy.
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Random cubic graphs
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Figure 6 Performance comparison (horizontal: number of vertices (except (*)); vertical: time in
seconds). (x) Incidence graphs of projective planes of order 16 are presented according to the order

of their automorphism group.
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Finally, plots #6,#9,#12 report the computation time of the simple coloured graphs
associated to the weighted digraph reported in plots #4,#7,#10, according to the construction
described in Figure 1.(c,d). These plots trivially show that the mentioned construction
becomes unfeasible as the density of the graph increases.

6 Concluding remarks

We have presented a method which has enabled us to equip Traces with the ability of
computing the order of the automorphism group and the canonical labelling of weighted
digraphs. The correctness of the method has been proven in the paper. We have executed
experimental tests which confirm that the performances of Traces remain substantially
unchanged. In the case of unweighted digraphs, it would be interesting to compare the
behaviour of the presented refinement algorithm with the one in [3]: the notion of (a,b)-
adjacency seems to be stronger than the one used by the authors of that paper, since it
not only allows for splitting cells according to the number of outgoing edges, but also in
conformity with ingoing and undirected edges.
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7 Appendix: assignment of internal weights

The data structures used by nauty and Traces for representing a weighted digraph G (as
described in [16]) are shown in Figure 7, where nv is the number of vertices and nde is the
number of arcs of (G; d is an array whose i-th position is the degree of vertex i; the neighbours
of i are stored in the array e from the position v[i] to v[i + d[i] — 1]. Therefore each entry k
of e represents an arc (7, k) of G, for some j. We write i¢(j, k) to denote the index of e which
corresponds to the edge (7, k). The weight of (4, k) appears in w[i.(j, k)]. Empty entries may
appear in d,e and w for the user’s convenience.

nde | 10

d | —+alsl2]2] ]

v | —lofs]7]o]

e |—rl2fsfalfafsfafl [ef2]1]2]
w |l lsfofsf2f] [ifsfls]r]
w| —llsfaffofafs] [2]afaf2]

Figure 7 Data structures for weighted digraphs and assignment of internal weights.

We remark that: (i) neighbours of vertices of G are stored in e in increasing order; (ii)
we can virtually remove the first neighbour of a vertex ¢ by adding 1 to the value of v[i] and
subtracting 1 to d[é]. In order not to destroy the graph while removing edges, a copy of d
and v will be made at the beginning of the computation. This costs O(n) time and space.
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Assume now that we are traversing the edges of the graph G in lexicographic order. By
(i) and (ii) above, for each visited edge (u,v) we can easily find the index in e of its opposite
edge (v,u): it will be the first neighbour of v, provided that we have virtually removed all
the opposites of the edges visited so far.

Algorithm 4 describes the procedure for assigning internal weights to a graph G =
(V, E,w). The traversal of edges of G in lexicographic order is executed by the two nested
for loops starting at lines 3-4. For each arc (u,v), we use the array A to store two
triples (w(u,v), w(v,u),ie(u,v)) and (w(v,u), w(u,v),ie(v,u)). The resulting array is sorted
according to the lexicographic order of the first two components of triples. This can be done
in O(m) steps via bucket sorting under the assumption that the values original weights are
bound by m. Finally, the array of internal weights is build: for each triple (wy,ws,) in A,
we assign to W[i] the appropriate value, in the obvious way.

Algorithm 4 Assignment of internal weights.

Data: A graph G(V, E,w) and an empty array A (of length |E|) of triples of integers.
Result: The array A with all the triples (w(u,v), w(v,u),ie(u,v)),V(u,v) € E, and the
array w of internal weights of G.
1 Make a copy dc of d and a copy vc of v;
2 (=1,
3 for i =1tondo
a for k =1 to dc[i] do

5 ky =vcli] + k let j be the k-th neighbour of i; then k; is the index of (4,7) in e
6 ko = vcle[k1]]; and ks is the index of (j,7) in e
7 All] + (wlk1],w[ka], k1); £ =0+ 1; store the triple associated to (3, j)
8 All] + (wlks],w[k1], ko); £ =0+ 1; store the triple associated to (j,1)
9 vclks] = velka] + 1; delke] = de[ka] — 1; virtually remove (7,1%)

end
end

10 Sort A according to the first and then to the second element of triples;

/* assignment of internal weights */
11 newweight = 0
12 Let (ag,b1,i1) be the triple in A[1];
13 W[i1] = newweight;
14 for j =2 to |E| do

15 Let (aj,b;,1;) be the triple in A[j];

16 if (aj,b;) # (a;—-1,b;—1) then newweight = newweight +1;

17 Wli;] = newweight;

end

18 Free dc and vc;
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